
4–1

4 Waveform Structure

Understanding Waveforms
This chapter covers the reading and writing of waveforms
in remote control, and attempts to explain their structure
and content.

Basic Structure Waveforms can be divided into two basic entities. One is the basic
data array: the raw data values from the LSA1000’s ADCs (Analog–
to–Digital Converters) in the acquisition. The other is the
accompanying descriptive information, such as vertical and
horizontal scale, and time of day, necessary for a full understanding
of the information contained in the waveform.

This information can be accessed by remote control using the
INSPECT? Query, which interprets it in an easily understood ASCII
text form. It can be more rapidly transferred using the
WAVEFORM? query, or written back into the instrument with the
WAVEFORM command.

The LSA1000 itself contains a data structure, or template, which
provides a detailed description of how the waveform’s information is
organized.

Waveforms can also be stored in pre-formatted ASCII output, for
popular spreadsheets and math processing packages, using the
STORE and STORE_SETUP commands.

Waveform Template This gives a detailed description of the form and content of the
logical data blocks of a waveform, and is provided as a
reference. Although a sample template is given elsewhere in this
manual (see Appendix A), it is suggested that the TEMPLATE?
query and the actual instrument template be used. The template
may change as the instrument’s firmware is enhanced, and it will
help provide backward compatibility for the interpretation of
waveforms.

Logical Data Blocks A waveform normally contains a waveform descriptor block and a
data array block. However, in more complicated cases, one or more
other blocks will be present.

4–2

Waveform Structure

Ø Waveform Descriptor block (WAVEDESC): This block includes
all the information necessary to reconstitute the display of the
waveform from the data. This includes:
Ø hardware settings at the time of acquisition
Ø the exact time of the event
Ø the kinds of processing that have been performed
Ø the name and serial number of the instrument
Ø the encoding format used for the data blocks
Ø miscellaneous constants.

Ø Optional User-provided Text block (USERTEXT): The
WFTX command can be used to put a title or description of
a waveform into this block. The WFTX? query command
gives an alternative way to read it. This text block can hold
up to 160 characters. They can be displayed in the TEXT +
TIMES status menu as four lines of 40 characters.

Ø First data array block (SIMPLE or DATA_ARRAY_1): This is
the basic integer data of the waveform. It can be raw or
corrected ADC data or the integer result of waveform
processing.

Ø Second data array block (DATA_ARRAY_2): This second
data array is needed to hold the results of processing
functions such as the Extrema (WP01 option) or Complex
FFT (WP02 option). In such cases, the data arrays contain:

Extrema FFT
DATA_ARRAY_1 Roof trace Real part

DATA_ARRAY_2 Floor trace Imaginary part

Note: The Template also describes an array named DUAL.
This is simply a way to allow the INSPECT? command to
examine the two data arrays together.

4–3

Using the INSPECT? Query
The query INSPECT? is a simple way to examine the
contents of a waveform in remote control.

Usable on both the data and descriptive parts, its most basic form
is:

INSPECT? “name”
where the template gives the name of a descriptor item or data
block. The answer is returned as a single string, but may span many
lines. Some typical dialogue:

question C1:INSPECT? “VERTICAL_OFFSET”
response C1:INSP “VERTICAL_OFFSET: 1.5625e− 03”
question C1:INSPECT? “TRIGGER_TIME”
response C1:INSP “TRIGGER_TIME: Date = FEB 17, 1994,

Time = 4: 4:29.5580”

INSPECT? can also be used to provide a readable translation of the
full waveform descriptor block with:

INSPECT? “WAVEDESC”

The template dump will give details of the interpretation of each of
the parameters. INSPECT? is also used to examine the measured
data values of a waveform using:

INSPECT? “SIMPLE”
For example, for an acquisition with 52 points:

INSPECT? “SIMPLE”
C1:INSP “
0.0005225 0.0006475 − 0.00029 − 0.000915 2.25001E − 05 0.000835
0.0001475 − 0.0013525 − 0.00204 − 4E − 05 0.0011475 0.0011475

− 0.000915 − 0.00179 − 0.0002275 0.0011475 0.001085 − 0.00079
− 0.00179 − 0.0002275 0.00071 0.00096 − 0.0003525 − 0.00104
0.0002725 0.0007725 0.00071 − 0.0003525 − 0.00129 − 0.0002275
0.0005225 0.00046 − 0.00104 − 0.00154 0.0005225 0.0012725
0.001335 − 0.0009775 − 0.001915 − 0.000165 0.0012725 0.00096

− 0.000665 − 0.001665 − 0.0001025 0.0010225 0.00096 − 0.0003525
− 0.000915 8.50001E − 05 0.000835 0.0005225
”

4–4

Waveform Structure

These numbers are the fully converted measurements in volts.
Of course, when the data block contains thousands of items the
string will contain a great many lines.

Depending on the application, the data may be preferred in its
raw form as either a BYTE (8 bits) or a WORD (16 bits) for each
data value. In this case the relations given below must be used
in association with WAVEFORM? to interpret the measurement.
It might then say:

INSPECT? “SIMPLE”,BYTE

The examination of data values for waveforms with two data
arrays can be performed as follows:

INSPECT? “DUAL” to get pairs of data
values on a single line

INSPECT? “DATA_ARRAY_1” to get the values of the
first data array

INSPECT? “DATA_ARRAY_2” to get the values of the
second data array.

Finally… INSPECT? is useful, but it is also a rather verbose way to send
information. As a query form only, INSPECT? cannot be used to
send a waveform back into the LSA1000. Users who require this
capability or speed or both should instead use the WAVEFORM
query or commands. It is possible to examine just a part of the
waveform or a sparsed form of it, using the
WAVEFORM_SETUP command covered later in this chapter.

Programmers might find it convenient, too, to combine the
capabilities of the inspect facility with the waveform query
command in order to construct files containing a plain text
version of the waveform descriptor together with the full
waveform in a format suitable for retransmission to the
instrument. This can be done for a waveform in a memory
location by sending the command

MC:INSPECT? “WAVEDESC”;WAVEFORM?

and putting the response directly into a disk file.

4–5

WAVEFORM?, Related Commands, and
Blocks
Using the WAVEFORM? query is an effective way to
transfer waveform data using the block formats defined in
the IEEE-488.2 standard. Responses can then be
downloaded back into the instrument using the
WAVEFORM command.

All of a waveform’s logical blocks can be read with the single
query:

C1:WAVEFORM?

This is the preferred form for most applications due to its
completeness. Time and space are the advantages when
reading many waveforms with the same acquisition conditions,
or when the interest is only in large amounts of raw integer data.

And any single block can be chosen for reading with a query
such as:

C1:WAVEFORM? DAT1

The description In the System Commands section provides the
various block names.

Interpreting the
Waveform Descriptor

The binary response to a query of the form:

C1:WAVEFORM? or C1:WAVEFORM? ALL

can be placed in a disk file and then dumped to show the following
hexadecimal and ASCII form:

Note: A waveform query response can easily be a block
containing over 16 million bytes if it is in binary format and
twice as much if the HEX option is used.

4–6

Waveform Structure

Ø Byte
Offset #

B i n a r y C o n t e n t s i n
H e x a d e c i m a l

ASCII
Translation
(.= uninteresting)

C1:WFALL,#90000
00450

 WAVEDESC...
.....LECROY_2_2.
................
................
................
.LECROYLSA1000..

0
16

32
48
64
80
96

112
128
144
160
176
192
208
224
240
256
272
288
304
320
336
352

367
368
384
400
416
432
448
464

0
11
27
43
59
75
91

107
123
139
155
171
187
203
219
235
251
267
283
299
315
331

0
1

17
33
49
65
81
97

43 31 3A 57 46 20 41 4C 4C 2C 23 39 30 30 30 30
30 30 34 35 30

 57 41 56 45 44 45 53 43 00 00 00
00 00 00 00 00 4C 45 43 52 4F 59 5F 32 5F 32 00
00 00 00 00 00 00 01 00 00 00 00 01 5A 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 68 00 00 00 00 00 00 00 00 00 00 00
00 4C 45 43 52 4F 59 4C 53 41 31 30 30 30 00 00
00 37 84 09 40 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 34 00 00 00 34 00 00 00
32 00 00 00 00 00 00 00 33 00 00 00 00 00 00 00
01 00 00 00 00 00 00 00 01 00 00 00 01 00 00 00
00 34 83 12 6F 3A 0D 8E C9 46 FE 00 00 C7 00 00
00 00 08 00 01 32 2B CC 77 BE 6B A4 BB 51 A0 69
BB BE 6A D7 F2 A0 00 00 00 56 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 53 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 40 3B 00
00 00 00 00 00 17 0A 05 02 07 C8 00 00 00 00 00
00 00 00 00 00 00 00 00 01 00 0E 00 04 3F 80 00
00 00 0A 00 00 3F 80 00 00 3A 0D 8E C9 00 00

 11
00 13 00 04 00 FA 00 09 00 16 00 0B 00 F3 00 E8
00 08 00 1B 00 1B 00 FA 00 EC 00 05 00 1B 00 1A
00 FC 00 EC 00 05 00 14 00 18 00 03 00 F8 00 0D
00 15 00 14 00 03 00 F4 00 05 00 11 00 10 00 F8
00 F0 00 11 00 1D 00 1E 00 F9 00 EA 00 06 00 1D
00 18 00 FE 00 EE 00 07 00 19 00 18 00 03 00 FA
00 0A 00 16 00 11 00

471 (Terminator) 0A

Here, in order to illustrate the contents of the logical blocks, the relevant parts (see explanations
next page) have been separated. In addition, to facilitate counting, the corresponding Byte Offset
numbering has been restarted each time a new block begins. The ASCII translation, only part of

which is shown, has been similarly split and highlighted, showing how its parts correspond to the
binary contents, highlighted in the same fashion.

4–7

On the preceding page… The first 10 bytes translate into ASCII and resemble the simple
beginning of a query response. These are followed by the string
“#9000000450”, the beginning of a binary block in which nine
ASCII integers are used to give the length of the block (450
bytes). The waveform itself starts immediately after this, at Byte
number 21. The very first byte is Byte #0, as it is for the first
byte in each block (at the head of each of the three Byte Offset
columns illustrated).

The first object is a DESCRIPTOR_NAME, a string of 16
characters with the value WAVEDESC.

Then, 16 bytes after the beginning of the descriptor (or at Byte
#37, counting from the very start and referring to the numbers in
the first Byte Offset column), we find the beginning of the next
string: the TEMPLATE_NAME with the value LECROY_2_2.

Several other parameters follow. The INSTRUMENT_NAME, 76
bytes from the descriptor start (Byte #97), is easily recognizable.
On the preceding line, at 38 bytes after the descriptor
(Byte #59), a four-byte-long integer gives the length of the
descriptor:

WAVE_DESCRIPTOR = 00 00 01 5A (hex) = 346.

At 60 bytes from the descriptor start (or Byte #81) we find
another four-byte integer giving the length of the data array:

WAVE_ARRAY_1 = 00 00 00 68 (hex) = 104.

And at 116 bytes after the descriptor (Byte #137), yet another
four-byte integer gives the number of data points:

WAVE_ARRAY_COUNT = 00 0000 34 (hex) = 52.

Now we know that the data will start at 346 bytes from the
descriptor’s beginning (Byte #367), and that each of the 52 data
points will be represented by two bytes. The waveform has a
total length of 346 + 104, which is the same as the ASCII string
indicated at the beginning of the block. The final 0A at Byte
#471 is the NL character associated with the message
terminator <NL><EOI>.

As the example was taken using an instrument with an eight-bit
ADC, we see the eight bits followed by a 0 byte for each data
point. However, for many other kinds of waveform this second
byte will not be zero and will contain significant information. The

4–8

Waveform Structure

data is coded in signed form (two’s complement) with values
ranging from − 32768 = 8000 (hex) to 32767 = 7FFF (hex). If we
had chosen to use the BYTE option for the data format the
values would have been signed integers in the range − 128 = 80
(hex) to 127 = 7F (hex). These ADC values are mapped to the
display grid in the following way:

Ø 0 is located on the grid’s center axis

Ø 127 (BYTE format) or 32767 (WORD format) is located at
the top of the grid

Ø − 128 (BYTE format) or − 32768 (WORD format) is located
at the bottom of the grid.

Interpreting
Vertical Data

Now that we know how to decipher the data it would be useful to
convert it to the appropriate measured values.

The vertical reading for each data point depends on the vertical
gain and the vertical offset given in the descriptor. For
acquisition waveforms this corresponds to the volts/div and
voltage offset selected after conversion for the data
representation being used. The template tells us that the vertical
gain and offset can be found at bytes 156 and 160 respective of
the descriptor start and that they are stored as floating point
numbers in the IEEE 32-bit format. An ASCII string giving the
vertical unit is to be found in VERTUNIT, Byte #196. The
vertical value is given by the relationship:

value = VERTICAL_GAIN × data −
VERTICAL_OFFSET

In the case of the data shown above we find:

VERTICAL_GAIN = 2.44141e− 07 from the floating
point number 3483 126f at byte
177

VERTICAL_OFFSET = 0.00054 from the floating point
number 3A0D 8EC9 at byte 181

VERTICAL_UNIT = V = volts from the string 5600 ...
at byte 217

and therefore:

4–9

since data[4] = FA00 = 64000 from the hexadecimal
word FA00 at byte 371. Overflows the
maximum. 16 bit value of 32767, so
must be a negative value. Using the
two’s complement conversion
64000− 216 = − 1536

value[4] = − 0.000915 V as stated in the inspect
command.

If the computer or the software available is not able to
understand the IEEE floating point values, a description is to be
found in the template.

The data values in a waveform may not all correspond to
measured points. FIRST_VALID_PNT and LAST_VALID_PNT
give the necessary information. The descriptor also records the
SPARSING_FACTOR, the FIRST_POINT, and the
SEGMENT_INDEX to aid interpretation if the options of the
WAVEFORM_SETUP command have been used.

For waveforms such as the extrema and the complex FFT there
will be two arrays — one after the other — for the two of the
result.

Calculating a Data
Point’s Horizontal
Position

Each vertical data value has a corresponding horizontal
position, usually measured in time or frequency units. Every
data value has a position, i, in the original waveform, with i = 0
corresponding to the first data point acquired. The descriptor
parameter HORUNIT gives a string with the name of the
horizontal unit.

Single-Sweep Waveforms x[i] = HORIZ_INTERVAL × i + HORIZ_OFFSET

For acquisition waveforms this time is from the trigger to the
data point in question. It will be different from acquisition to
acquisition since the HORIZ_OFFSET is measured for each
trigger.

In the case of the data shown above this means:

HORIZ_INTERVAL = 1e− 08 from the floating point
number 322b cc77 at byte 194

4–10

Waveform Structure

HORIZ_OFFSET = − 5.149e− 08 from the double
precision floating point number
be6b a4bb 51a0 69bb at byte 198

HORUNIT = S = seconds from the string 5300 ...
at byte 262.

4–11

This gives:

x[0] = − 5.149e− 08 S
x[1] = − 4.149e− 08 S.

WAVEFORM Commands Waveforms that have been read in their entirety with the
WAVEFORM? query can be sent back into the instrument using
WAVEFORM and other, related commands. Since the
descriptor contains all of the necessary information, care need
not be taken with any of the communication format parameters.
The instrument can learn all it needs to know from the

waveform.

When synthesizing waveforms for display or comparison, in
order to ensure that the descriptor is coherent, read out a
waveform of the appropriate size and then replace the data with
the desired values.

There are many ways to use WAVEFORM and related
commands to simplify or speed up work. Among them:

Ø Partial Waveform Readout: The WAVEFORM_SETUP
command allows specification of a short part of a waveform
for readout, as well as selection of a sparsing factor for
reading only every n’th data point.

Ø Byte Swapping: The COMM_ORDER command allows the
swapping of the two bytes of data presented in 16-bit word
format (can be in the descriptor or in the the data/time
arrays), when sending the data over the remote-control
ports. This allows easier data interpretation, depending on
the computer system used:

Ø Intel-based computers — the data should be sent with
the LSB first, and the command should be CORD LO.

Note: Waveforms can only be sent back to memory traces
(M1, M2, M3, M4). This means possibly removing or
changing the prefix (C1 or CHANNEL_1) in the response to
the WF? query. See the System Commands for examples.

4–12

Waveform Structure

Ø Motorola-based computers — the data should be sent
with the MSB first (CORD HI). This is the default at
power-up.

Ø Data Length, Block Format, and Encoding: The
COMM_FORMAT command gives control over these
parameters. If the extra precision of the lower order byte of
the standard data value is not needed, the BYTE option
allows a saving of a factor of two on the amount of data to
be transmitted or stored. If the computer being used is
unable to read binary data, the HEX option allows a
response form where the value of each byte is given by a
pair of hexadecimal digits.

Ø Data-Only Transfers: The COMM_HEADER OFF mode
enables a response to WF? DAT1 with the data only (the
C1:WF DAT1 will disappear).

If COMM_FORMAT OFF,BYTE,BIN has also been
specified, the response will be mere data bytes (the
#90000nnnnn will disappear).

4–13

High-Speed Waveform Transfer
Several important factors need to taken into account for
achieving maximum continuous-data-transfer rates from
server to client.

The single most important of these is the limiting of work done in
the computer. This effectively means avoiding writing data to
disk wherever possible, as well as minimizing operations such
as per-data-point computations and reducing the number of calls
to the IO system. Ways of doing this include:

Ø Reducing the number of points to be transferred and the
number of data bytes per point. The pulse parameter
capability and the processing functions can save a great
deal of computing and a lot of data transfer time if employed
creatively.

Ø Attempting to overlap waveform acquisition with waveform
transfer. The LSA1000 is capable of transferring an already
acquired or processed waveform after a new acquisition has
been started. If the instrument is obliged to wait for triggers,
overlapping waveform acquisition with waveform transfer
will considerably increase the total time that the instrument
will be able to acquire events (live time).

Example The desirable type of command is:

ARM; WAIT;C1:WF? to wait for the event, transfer
the data, and then start a new
acquisition.

This line can be “looped” in the program as soon as it has
finished reading the waveform.

4–1

4 Waveform Structure

